
Hanson Hao
1-Dimensional Arakelov Geometry

Page: 1

In these notes, we will write out some basics of Arakelov geometry in the 1-dimensional
case. We follow both [Mor14] and these notes by Chambert-Loir.

1 Basic Notions

Let K be a number field, R = OK the ring of integers, S = Spec(R), K(C) the set of
embeddings of K in C. It is also possible to do all the theory below over an order in R
(a Z-lattice of K inside R, geometrically a singular integral curve with normalization S),
as [Mor14] does, but we will not do this—I am happy to work over a Dedekind domain so
everything is easier.

Definition 1.1. The group of arithmetic divisors on R is Z1(R) ⊕
(⊕

σ∈K(C) Rσ
)

, where

Z1(R) is the usual group of divisors on R. We denote this group by Ẑ1(R) of Ẑ1(R). A
typical element will be written as (D, g), where D is the finite part and g is the infinite part.

In general, our notation will add hats for the arithmetic analogues of classical objects.
The idea is that we manually input the archimedean data, which lies over the (nonexistent)
points of the affine curve S that would compactify it. In this way we can make arguments
that mirror the ones we would make in the geometric case, where S would be a smooth
projective/proper curve over a field. This is basically the philosophy of Arakelov theory.

Definition 1.2. The degree of an arithmetic divisor (D, g), where D =
∑

p∈maxSpec(OK) npp,
is

d̂eg(D, g) =
∑

p∈maxSpec(OK)

np logN(p) +
1

2

∑
σ∈Σ

gσ.

This is a homomorphism Ẑ1(R)→ R.

Remark 1.3. Note that since we are no longer working over a base field k, we no longer have
notion of dimension of a vector space. Therefore logN(p) plays this role, as an analogue of
dimFp(R/p) = logp[R/p : Fp].

Recall that in the classical case, for a ∈ K∗, there should be some natural construction
of an associated (arithmetic) divisor d̂iv(a) with degree 0.

Definition 1.4. Given a ∈ K∗, we define

d̂iv(a) = (div(a), (−2 log|σ(a)|)σ∈Σ)

where div(a) =
∑

p∈maxSpec(OK) ordp(a)p.

https://webusers.imj-prg.fr/~antoine.chambert-loir/enseignement/2008-09/cga/cga.pdf
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Remark 1.5. The normalizations of 1/2 in Definition 1.7 and 2 in Definition 1.4 are there
since we are using all embeddings of K into C, and not just half of the complex conjugate
embeddings (one from each conjugate pair of complex embeddings). This differs from the
conventions of Chambert–Loir.

Proposition 1.6. For any a ∈ K∗, d̂eg(d̂iv(a)) = 0.

Proof. Taking the sum over primes p containing a, we have

d̂eg(d̂iv(a)) =
∑
p

ordp(a) log(N(p))−
∑
σ∈Σ

log|σ(a)| = log
∏
p

N(p)ordp(a) − log
∏
σ∈Σ

|σ(a)|

= logN(aR)− logNK/Q(a).

But by the theory of modules over a PID, the last number is 0 (the first term being the size
of the cokernel of the Q-linear map K → K given by multiplication by a, the second term
being the determinant of that map).

Definition 1.7. We call the quotient ĈH
1
(R) := Ẑ1(R)/R̂at

1
(R) the first arithmetic Chow

group of S. By the previous proposition, d̂eg induces a homomorphism ĈH
1
(R)→ R.

Example 1.8. When K = Q, d̂eg : ĈH
1
(Spec(Z)) → R is an isomorphism. Injectivity

follows from the fact that Q is a PID.

We now turn to the “geometric” side of things. For now, we treat things in slightly more
generality than perhaps necessary. Let H be a finitely generated R-module. For σ ∈ K(C),
we denote by Hσ the tensor H ⊗

R
σ−→C

C.

Proposition 1.9. The natural C-linear homomorphism φ : H ⊗Z C →
⊕

σ∈K(C) Hσ given

by h ⊗ α 7→ (h ⊗ α)σ is bijective. Moreover, if we set F∞ : H ⊗Z C → H ⊗Z C by
F∞(h ⊗ α) = h ⊗ α, and F ′∞ :

⊕
σ∈K(C) Hσ →

⊕
σ∈K(C) Hσ as induced by the natural anti-

C-linear maps Hσ → Hσ (h⊗ α 7→ h⊗ α), then φ ◦ F∞ = F ′∞ ◦ φ. In particular, φ(H ⊗Z R)
is the set of x ∈

⊕
σ∈K(C) Hσ such that F ′∞(x) = x.

Proof. It suffices to prove the first assertion in the case H = R, because then

H ⊗R (R⊗Z C)→ H ⊗R

 ⊕
σ∈K(C)

Rσ


is bijective, and unraveling these maps shows that φ is bijective. So we reduce to the case
H = R. Noting that R ⊗Z C = K ⊗Q C (naturally) and R ⊗σR C = K ⊗σK C for all
σ ∈ K(C), we just need to show that K ⊗Q C →

⊕
σ∈K(C) Kσ is bijective. This is well-

known to be bijective, upon writing K/Q as a simple extension Q(r) and considering this
map as f(r)⊗ α 7→ (f(σ(r))α) = (σ(f(r))α). Finally, given this bijection, φ ◦ F∞ = F ′∞ ◦ φ
is obvious, as is the last statement.
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Next, suppose we equip each Hσ with a Hermitian inner product hσ. We call the data
H := (H, h) := (H, (hσ)) a Hermitian R-module.

Definition 1.10. We say a Hermitian R-module (H, h) is of real type if hσ(x⊗σ 1, y⊗σ 1) =
hσ(x⊗σ 1, y ⊗σ 1) holds for all σ and x, y ∈ H. This expresses the “conjugation invariance”
of the family h of metrics.

Example 1.11. The canonical Hermitian metric hcan on R (rank 1) given by hcanσ (x⊗1, y⊗
1) = σ(x)σ(y) is clearly of real type.

Now for a Hermitian R-module H, we set 〈x, y〉h =
∑

σ∈K(C) hσ(x⊗ 1, y ⊗ 1). Note that

this is in R if (H, h) is of real type (conjugation-invariant). Then

Proposition 1.12. The above pairing gives a positive definite Hermitian form on H, by
which we mean it is a antisymmetric Z-bilinear form on H that becomes a positive definite
inner product on H ⊗Z C (or H ⊗Z R, if h is of real type) via 〈x⊗ a, y ⊗ b〉 := ab〈x, y〉h (or
the form is identically 0, as is the case when H is torsion as a Z-module).

Proof. It is easy to verify that the above is a Hermitian form. To show the positive-
definiteness, use the isomorphism of Proposition 1.9. The C-vector space

⊕
σ∈K(C) Hσ has

a Hermitian inner product given by the direct sum of the inner products hσ (with different
components defined to be mutually orthogonal), i.e.

h′((xσ), (yσ)) =
∑
σ

hσ(xσ, yσ).

In particular this is positive definite. Transporting this inner product over the isomorphism
of Proposition 1.9 gives an inner product on H ⊗Z C via

〈x⊗ a, y ⊗ b〉′ =
∑
σ

abhσ(x⊗ 1, y ⊗ 1) = 〈x⊗ a, y ⊗ b〉h.

This positive-definite form is exactly what we wanted.

Definition 1.13. We define a Hermitian vector bundle on S to be a finitely generated
Hermitian projective R-module. When it is locally free of rank 1, we call it a Hermitian
line bundle. Sometimes we additionally require the assumption that these are of real type,
depending on the situation.

Recall that being projective over a Dedekind domain is equivalent to being flat, and also
torsion-free.
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Definition 1.14. We define P̂ic(S) to be the group of Hermitian line bundles on S up to
isometry (a map f : (E, h) → (E ′, h′) with E ∼= E ′ and ‖x‖hσ = ‖f(x)‖h′σ for all x ∈ σ∗E).
The group operation is still tensor product (with the natural Hermitian form induced on the
tensor product σ∗E ' σ∗E1⊗C σ

∗E2). The same goes for the dual line bundle. The identity
is the trivial line bundle with the trivial Hermitian metric given by ‖1‖σ = ‖1⊗ 1‖σ = 1 for
each σ (note we can then recover the Hermitian form via the “polarization identity”).

We will now define the first arithmetic Chern class of a Hermitian R-module. If r > 0
is the rank of H (at the generic point), by lifting a suitable basis of H ⊗R K = H ⊗Z Q,
we may find s1, . . . , sr ∈ H such that H/

∑r
i=1 Rsi is torsion as a Z-module (from which it

follows that
∑r

i=1Rsi is free as an R-module with bais {si}). In particular, we may define
a divisor [H/

⊕r
i=1 Rsi] ∈ Z1(R) as

∑
p∈maxSpec(R)(lengthRp

Tp)[p], where T is this torsion
module. Note that this makes sense because a finitely generated torsion module is only
supported at finitely many nonzero primes (the primes that divide an element of R that kills
T ), and so T ∼=

∏
p∈maxSpec(R) Tp via the natural map.1 Then

Proposition 1.15. For s1, . . . , sr as above, define z(s1, . . . , sr) ∈ Ẑ1(R) as

z(s1, . . . , sr) :=

(
[H/

r∑
i=1

Rsi],
∑
σ

− log det ((hσ(si ⊗σ 1, sj⊗σ1 ))1≤i,j≤r) [σ]

)
.

This, as an element of ĈH
1
(R), does not depend on the choice of the si. We denote it by

ĉ1(H), and call it the first arithmetic Chern class of H.

We note that in the case r = 0, i.e. when H is torsion, we can define the above construc-
tion to be ([H], 0).

Proof. Since we do not need the generality of this statement for now, we only give the citation
[Mor14, Proposition 3.10]. Let us prove this in the special case r = 1, which is what we need.
Let s′1 be another element of H such that H/Rs′1 is torsion as a Z-module. If s′1 ∈ Rs1, then
choose a ∈ R with s′1 = as1, so there is an exact sequence

0→ Rs1/Rs
′
1 → H/Rs′1 → H/Rs1 → 0.

By exactness of localization and additivity of length in short exact sequences, we have
[H/Rs′1] = [Rs1/Rs

′
1] + [H/Rs1]. Then [Rs1/Rs

′
1] = [Rs1/aRs1] = [R/aR],2 and easily

− log hσ(s′1 ⊗ 1, s′1 ⊗ 1) = − log hσ(s1 ⊗ 1, s1 ⊗ 1)− 2 log|σ(a)|.
1For a proof of this, see Lemma 1.6 in [Mor14]. Summarized, because T is a finitely generated torsion

module over a Dedekind domain, so only supported at finitely many maximal ideals, and in particular there
is a filtration 0 ⊂ T1 ⊂ . . . ⊂ Tn = T where each Ti/Ti−1 is isomorphic as R-modules to R/pi for some prime
pi. Then the support of T is the union of the Ti, and since the claim is true for modules over the form R/p,
write out the short exact sequences and induct on n.

2In higher dimensions a is replaced with det(A), and I think this is proved using modules over a PID.
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Therefore we have z(s′1) = z(s1) + d̂iv(det(A)) = z(s1) + d̂iv(a).
In the general case, because H/Rs1 is torsion over Z, there is nonzero a such that as′1 ∈

Rs1, so we can prove z(as′1) = z(s1) in ĈH
1
(R) as above, and similarly z(as′1) = z(s′1) in

ĈH
1
(R), so we are done.

We may then define d̂eg(H, h) as d̂eg(ĉ1(H, h)), which we also call the arithmetic degree.
Now, note that for a torsion module T ∼=

⊕
p Tp, we have log|T | =

∑
p lengthRp

Tp log|R/p|,
because the only simple Rp-module is R/p. By the definition of [T ], we have

d̂eg(H, h) = log|H/(Rs1 + . . .+Rsr)| −
1

2

∑
σ

log det ((hσ(si ⊗σ 1, sj ⊗σ 1))1≤i,j≤r) , (1.1)

or d̂eg(H, h) = log|H| when r = 0.
When H is projective of rank r = 1, i.e. a Hermitian line bundle, let s be a nonzero

element of L ⊗R K. For each nonzero prime p of R, let lp be a local basis of L at p (i.e. lp
is an Rp-basis of Lp, or alternatively a basis for a trivialization of L above p). Then there is
fp ∈ K such that s = fplp, and ordp(fp) doesn’t depend on the choice of lp as any two such
choices of lp differ by a unit in Rp. Hence ordp(s) := ordp(fp) is well-defined, and we can
define div(s) =

∑
p ordp(s)[p]. Then:

Proposition 1.16.

d̂eg(L, h) = d̂eg(div(s),
∑

σ∈K(C)

− log hσ(s⊗ 1, s⊗ 1)[σ]).

Here s⊗ 1 is an element of (L⊗R K)⊗
K

σ−→C
C.

Proof. Choose nonzero a ∈ R such that as ∈ L. Then

[L/Ras] =
∑
p

ordp(as)p =
∑
p

ordp(a)p +
∑
p

ordp(s)p,

since by definition of [L/Ras] we look for the length of Lp/Rpas = Rplp/Rpas at each prime
p, which is evidently ordp(as) by the definition. We also have

log hσ(as⊗ 1, as⊗ 1) = 2 log|σ(a)|+ log hσ(s⊗ 1, s⊗ 1),

so

([L/Ras],−
∑
σ

log hσ(as⊗ 1, as⊗ 1)σ) = d̂iv(a) + (div(s),
∑

σ∈K(C)

− log hσ(s⊗ 1, s⊗ 1)[σ]).

We are done by Propositions 1.15 and 1.6.
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Now, we expect from the geometric theory that P̂ic(S) ∼= ĈH
1
(R). Indeed:

Proposition 1.17. ĉ1 : P̂ic(S)→ ĈH
1
(R) is a group isomorphism.

Proof. Note that the proof of Proposition 1.16 shows that, as an element of ĈH
1
(R), ĉ1(L, h)

can be constructed by taking any nonzero s ∈ L ⊗ K, giving the arithmetic divisor class
d̂iv(s) := (div(s),

∑
σ∈K(C)− log hσ(s ⊗ 1, s ⊗ 1)[σ]). So, to see that ĉ1 is a group homo-

morphism, given Hermitian line bundles (L, h) and (M,h′), note that the tensor prod-
uct of sections l amd m of L ⊗ K and M ⊗ K, as an element of (L ⊗ M) ⊗ K, has

d̂iv(l ⊗ m) = d̂iv(l) + d̂iv(m), because multiplication induces addition on valuations and
logarithms.

Suppose now ĉ1(L) = 0, so for a nonzero s ∈ L⊗K, we have d̂iv(s) equaling the divisor

of a rational function. In particular, if the arithmetic divisor of a ∈ K∗ equals d̂iv(s), then

replace s with a−1s so that d̂iv(s) = 0. Hence s ∈ L, because by the construction of d̂iv(s),
we see that s generates Lp for all p, so s ∈ L. Hence the map OK → L given by 1 7→ s is
an isomorphism because it is so when localized at each prime, and is moreover an isometry
because ‖s⊗ 1‖σ = 1 for each σ ∈ Σ. So L is the identity in P̂ic(S).

For surjectivity, if (D, g) ∈ Ẑ1(R), then as in the classical case we consider L = OS(D),
the fractional ideal consisting of 0 and {a ∈ K∗ : div(a) + D ≥ 0}. Then Lp = lpRp

where lp ∈ K is an element of L with valuation −ordp(D) at p, and so 1 ∈ L ⊗R K has
ordp(1) = −ordp(lp) = ordp(D) by definition, meaning div(l) = D. For σ ∈ Σ, we set the
Hermitian metric hσ on Lσ as given by hσ(1⊗ 1, 1⊗ 1) = exp(−gσ), so that the Hermitian
line bundle (L, h) maps to (D, g) under ĉ1.

Example 1.18. The degree of the trivial Hermitian line bundle R is 0. If I is an integral

ideal of R with Hermitian metrics obtained by restriction from R, then d̂eg(I) = − log(N(I)),
because for nonzero x ∈ I,

d̂eg(I) = log|I/xR| − log
∑
σ

‖x‖σ = log(N(xR)/N(I))− log(NK/Q(x)) = − log(N(I)).

Now we return to some concepts in the geometry of numbers. In particular we would
like to define some notion of “global sections” of a Hermitian line bundle that accounts for
the added Archimedean data. In the geometric setting, global sections of a line bundle are
exactly those admitting no poles. In other words, the valuation of such a section at each
codimension-1 point of our curve/scheme is nonnegative. By analogy, for a normed finitely
generated Z-module (i.e. a finitely generated Z-module M equipped with a norm on MR),

Definition 1.19. The global sections of M is the set H0(M) := {x ∈ M : ‖x‖ ≤ 1}. We
also call this the set of small sections. We define h0(M) = log|H0(M)|. This number is finite
because M is a finite Z-module, so if Mtor is the (finite) Z-torsion submodule, then M/Mtor
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is a Z-lattice inside M⊗Z R ∼= (M/Mtor)⊗Z R and only has finitely many points of bounded
norm. In particular h0(M) = h0(M/Mtor) + log|Mtor|.

We can similarly define H0
<1(M) and h0

<1(M). We usually apply this definition to the
case when M is a Hermitian R-module of real type.

Remark 1.20. Note in passing that H0(M) is not even a group.

Definition 1.21. Let M be a finitely generated normed Z-module. Define:

χ̂(M, ‖·‖) = log

(
vol(B(M))

vol(MR/(M/Mtor))

)
+ log|Mtor|

where B(M) = B(M, ‖·‖) = {x ∈ MR : ‖x‖ ≤ 1}. Note that this depends on the choice of
norm on M , but not on the choice of Haar measure on MR. This intuitively measures the
size of H0(M): the larger it is, the smaller the fundamental mesh of M/Mtor is in comparison
to the unit ball.

Proposition 1.22. Let (H, h) be a Hermitian Z-module of real type (meaning we have a
Hermitian metric on H ⊗Z C such that h(x ⊗ 1, y ⊗ 1) ∈ R for all x, y ∈ H, see Definition
1.10). Then this naturally gives a norm on HR, and

χ̂(H) = d̂eg(H) + log(V (rank H)),

where V (n) is the volume of the unit ball in Rn.

Proof. It is clear from the definitions that χ̂(H) = χ̂(H/Htor) + log|Htor| and d̂eg(H) =

d̂eg(H/Htor, h) + log|Htor|, the latter since we may choose the same si for H and H/Htor

(see Proposition 1.15). So we immediately reduce to the case where H is Z-free. Choose an
orthonormal basis x1, . . . , xn of HR with respect to the inner product h. Then, under the
Haar measure on HR such that the unit cube [0, 1]n (with respect to this orthonormal basis)
has volume 1, we have V (n) = vol(B(H)) = vol({x ∈ HR : ‖x‖ ≤ 1}).

But we will also later prove that vol(HR/H) = det(h(ei, ej))
1/2 for a Z-basis e1, . . . , en of

H (see after Definition 2.2). Therefore

χ̂(H) = log

(
vol(B(H))

vol(HR/H)

)
= log(vol(B(H)))−1

2
log det(h(ei, ej)) = log(V (rank H)+d̂eg(H, h)

by the formula (1.1).

Example 1.23. Suppose R is the ring of integers of a number field, equipped with the
norm ‖x‖ := supσ∈K(C) h

can
σ (x, x)1/2 as a Z-module. Then H0(R) is the set of x ∈ R with

supσ∈K(C)|σ(x)|2 ≤ 1. In particular |σ(x)| ≤ 1 for each σ, and so H0(R) is precisely the set
of roots of unity in K along with 0.
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2 Arithmetic Riemann–Roch formula

In this section we would like to discuss a Riemann–Roch formula for arithmetic curves, using
the h0 we have defined above. Let’s begin with something really easy, in analogy with the
classical situation.

Proposition 2.1. If L is a nontrivial Hermitian line bundle with d̂eg(L) ≤ 0, then h0(L) = 0.

Proof. If not, then l is a nonzero element of H0(L) and by Proposition 1.16:

d̂eg(L) =
∑
p

ordp(l)−
1

2

∑
σ∈Σ

log hσ(l ⊗ 1, l ⊗ 1).

Since ‖l‖σ = hσ(l ⊗ 1, l ⊗ 1)1/2 ≤ 1 for all σ, the degree must be nonnegative, so the

assumption forces d̂eg(L) = 0 and all terms in the sum vanish. Therefore L = OK l (because
l generates Lp over each Rp) and ‖l ⊗ 1‖σ = 1 for all σ, so L is isometric to the trivial line
bundle.

Now let M be a finite Z-module equipped with a positive definite Hermitian form 〈·, ·〉 :
M ×M → C. Then M has the structure of Hermitian Z-module.

Definition 2.2. The volume of M (with respect to the given Hermitian form) is

vol(M) := exp(−d̂eg(M, 〈·, ·〉)).

Suppose M is free with basis e1, . . . , er. Then the formula (1.1) shows that

vol(M) = 0 + exp

(
1

2
log det(〈ei, ej〉)

)
= det(〈ei, ej〉)1/2.

In particular, if M is of real type, then vol(M) is simply the volume of the fundamental
parallelogram of the lattice M in M ⊗Z R.

We now return to the case where M = R, R is the ring of integers of a number field
(again [Mor14] treats the general case of R a reduced order, which I’m not going to bother
with). Recall the well-known fact

Theorem 2.3. [Neu99, I.5.2]

vol(R, 〈·, ·〉hcan) =
√
|DK |.

Here the canonical Hermitian form is given by 〈ωi, ωj〉hcan =
∑

σ σ(ωi)σ(ωj) for {ωi} forming
a Z-basis of R (Example 1.11). In particular (R, hcan) is the trivial Hermitian line bundle
on R.
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Indeed vol(R) = det(〈ωi, ωj〉hcan)1/2 = det(ATA)1/2 = |detA| =
√
|DK | where A is the

matrix Aij = σi(ωj).

Definition 2.4. For a Hermitian R-module (H, h), define

χAr(H, h) := − log(vol(H/Z, 〈·, ·〉h)) = d̂eg(H/Z, 〈·, ·〉h),

with H/Z meaning H viewed as a Z-module (Definition 2.2).

Example 2.5. From Theorem 2.3 we have χAr(R, h
can) = −1

2
log|DK |. Next, suppose our

Hermitian R-module is (I, h) where I ⊆ R is an ideal and h is obtained from restricting the
canonical (trivial) metric on R. Then the same computation following Theorem 2.3 for a
Z-basis of I shows that

vol(I, hcan) =
√
|DK |(R : I)

by looking at the change in the discriminant after scaling a basis. Hence χAr(I, h) =
−1

2
log|DK | − log|R/I|.

Like χ̂ before (Definition 1.21), χAr should intuitively measure the size of H0(H, h),
although this is a bit harder (for me) to see how it works right now. Note that if (H, h) is

of real type, then ‖x‖ = 〈x, x〉1/2h gives H/Z the structure of a finitely generated normed
Z-module of real type, and then

χ̂(H/Z, 〈·, ·〉1/2h ) = d̂eg(H/Z, ‖·‖) + log(V (rankZH)) = χAr(H, h) + log(V (rankZH))

by Proposition 1.22.
We now come to the following theorem, where χAr plays exactly the role of the Euler

characteristic:

Theorem 2.6 (Riemann-Roch). For a Hermitian R-module (H, h) of rank r, we have

χAr(H, h) = d̂eg(H, h) + rχAr(R, h
can).

Proof. When r = 0, the RHS is simply log|H|, as is the LHS.So now take r > 0. Choose
ω1, . . . , ωn a basis ofR as a Z-module, and choose s1, . . . , sr ∈ H such thatH/(Rs1+. . .+Rsr)
is torsion as a Z-module. Order the ωisj inverse-lexicographically ω1s1, ω2s1, . . . (noting that
H mod the Z-submodule generated by all the ωisj is Z-torsion), and consider the rn × rn
matrix A of inner products (〈ωisj, ωksl〉h). Then the definition (1.1) gives

χAr(H, h) = d̂eg(H/Z, 〈·, ·〉h) = log|H/(Rs1 + . . .+Rsr)| −
1

2
log det(A). (2.1)
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We now compute the determinant of A. Divide A up into n × n matrices and let A(j, l),
1 ≤ j, l ≤ r, be the (j, l)-th block. Let σ1, . . . , σn be the distinct embeddings of K into C,
and we have

〈ωisj, ωksl〉h =
n∑

m=1

hσm(ωisj ⊗ 1, ωksl ⊗ 1) =
n∑

m=1

σm(ωi)hσm(sj ⊗ 1, sl ⊗ 1)σm(ωk),

and so for ∆ the n × n matrix ∆ij = σi(ωj) and B(j, l) the n × n diagonal matrix with
hσm(sj ⊗ 1, sl ⊗ 1) in the mth diagonal entry, we have

A(j, l) = ∆TB(j, l)∆.

Hence A = DTBD where D is an rn × rn diagonal block matrix with diagonal blocks all
equal to ∆, and B is an rn× rn block matrix with blocks B(j, l), 1 ≤ j, l ≤ r. Hence

det(A) = |det(D)|2 det(B) = Dr
K det(B) = vol(R, 〈·, ·〉hcan)2r det(B)

by Theorem 2.3. Hence from (2.1) and Definition 2.4

χAr(H, h) = log|H/(Rs1 + . . .+Rsr)| −
1

2
log det(B) + rχAr(R, h

can).

Now we have to figure out det(B). As in Proposition 1.9, consider the vector space V :=
H ⊗Z C ∼=

⊕n
m=1Hσm with the componentwise Hermitian inner product hV induced from

the data h. By (1.1),

d̂eg(H, h) = log|H/(Rs1 + . . .+Rsr)| −
1

2

n∑
m=1

log det ((hσm(si ⊗σm 1, sj ⊗σm 1))1≤i,j≤r) ,

and
n∑

m=1

log det ((hσm(si ⊗ 1, sj ⊗ 1))1≤i,j≤r) = log det(B′)

where B′ is the matrix B′ij = hV (si⊗σk1, sj⊗σl1) in the ordered basis (si⊗σk1)1≤k≤n,1≤i≤r, the
ordering being lexicographic with k first (i.e. varying si before σk; in particular B′ is block-
diagonal with r × r blocks). But B is, by definition, the matrix Bij = hV (si ⊗σk 1, sj ⊗σl 1)
but in the ordered basis (si ⊗σk 1)1≤i≤r,1≤k≤n, the ordering being lexicographic with i first
(i.e. varying σk before si). Hence det(B) = det(B′) as we have only permuted the order of
the basis, and so

χAr(H, h) = log|H/(Rs1+. . .+Rsr)|−
1

2
log det(B′)+rχAr(R, h

can) = d̂eg(H, h)+rχAr(R, h
can).
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Example 2.7. Continuing the Example 2.5 of an ideal in R with the restricted trivial metric,
Riemann–Roch says that

χAr(I, h) = d̂eg(I, h) + χAr(R, h
can).

Indeed this agrees with Examples 1.18 and 2.5, where the equation becomes − log|R/I| −
1
2

log|DK | on both sides (on the RHS we just split up the two terms).

We now apply the Riemann-Roch theorem to estimate the number of small sections. Let
(E, h) be a Hermitian R-module. Recall Proposition 1.9 which shows that the C-linear map
φ : E ⊗Z C→

⊕
σ∈K(C) Eσ, x⊗ α 7→ (x⊗ α)σ is an isomorphism. Write φσ for the induced

map E ⊗Z C→ Eσ. For s ∈ E ⊗Z R, also define

‖s‖Esup = max
σ∈K(C)

hσ(φσ(s), φσ(s))1/2 (2.2)

(compare Example 1.23). This makes E into a normed finitely generated Z-module. Assume
now that E is torsion-free (so projective in our setting with R Dedekind, and also free as
a Z-module) and h is of real type. Let r1, r2 be the number of real and pairs of complex
conjugate embeddings of K into C. We have:

Theorem 2.8. Let r be the rank of E over R. Then

1.

χ̂(E, ‖·‖sup) = d̂eg(E) + log

(
V (r)r1(2rV (2r))r2

|DK |r/2

)
,

V (n) being the volume of the unit ball in Rn.

2.

h0(E, ‖·‖sup) > d̂eg(E) + log

(
V (r)r1V (2r)r2

2r(r1+r2)|DK |r/2

)
.

In particular if

d̂eg(E) ≥ log

(
2r(r1+r2)|DK |r/2

V (r)r1V (2r)r2

)
then there is a nonzero (small) section in H0(E).

3.

h0
<1(E, ‖·‖sup) ≥ d̂eg(E) + log

(
V (r)r1V (2r)r2

2r(r1+r2)|DR|r/2

)
.
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Proof. 1. Let σ1, . . . , σr1 be the real embeddings and τ1, . . . , τr2 be a collection consisting
of one complex embedding from each conjugate pair. Let eσ,1, . . . , eσ,r be an orthonor-
mal basis of Eσ with respect to the Hermitian product hσ. We assume that these
eσ,i’s are chosen so that the natural anti-C-linear map Eσ → Eσ (see Proposition 1.9)
sends eσ,i to εσ,i. Since φ(E ⊗Z R) is precisely the subspace of

⊕
σ∈K(C) Eσ that is

invariant under the map F∞ :
⊕

σ∈K(C) Eσ →
⊕

σ∈K(C) Eσ, (x⊗σ a) 7→ (x⊗σ a) (again

Proposition 1.9), we see that

eσ1,1 . . . , εσ1,r, . . . , eσr1 ,1, . . . , eσr1 ,r,
eτ1,1 + eτ1,1√

2
,

√
−1(eτ1,1 − eτ1,1)√

2
, . . . ,

eτr2 ,r + eτr2 ,r√
2

,

√
−1(eτr2 ,r − eτr2 ,r)√

2

is an orthonormal R-basis of φ(E ⊗Z R) with respect to the direct sum
⊕

σ hσ of
the Hermitian products hσ on

⊕
σ∈K(C) Eσ. Then we claim (for the Haar measure on

φ(E ⊗Z R) coming from
⊕

σ hσ)

vol{(xσ) ∈ φ(E ⊗Z R) : hσ(xσ, xσ) ≤ 1 ∀σ} = V (r)(2rV (2r))r2 .

Indeed, expand (xσ) in the basis given above, with coefficients ai,k for eσi,k, bj,l for
(eτj ,l + eτ j ,l)/

√
2, and cj,l for (

√
−1)(eτj ,l − eτ j ,l)/

√
2. Then

(xσ) =

r1∑
i=1

r∑
k=1

ai,keσi,k +

r2∑
j=1

r∑
l=1

(
bj,l +

√
−1cj,l√
2

eτj ,l +
bj,l −

√
−1cj,l√
2

eτ j ,l

)
,

so the condition hσ(xσ, xσ) ≤ 1 for all σ is equivalent to the condition that
∑r

k=1 a
2
i,k ≤ 1

and
∑r

l=1 b
2
j,l + c2

j,l ≤ 2 for each 1 ≤ i ≤ r1 and each 1 ≤ j ≤ r2. Therefore the volume
of the set of such (xσ) is visibly V (r)r1(2rV (2r))r2 .

From the Definition 2.4, we have χAr(E, h) = − log(vol(φ(E⊗ZR)/φ(E))), vol(φ(E⊗Z

R)/φ(E)) being the volume of the fundamental parallelogram of E in E ⊗Z R (see re-
mark after Definition 2.2), with respect to the Hermitian product of real type 〈x, y〉h =∑

σ hσ(x, y) on E, which indeed induces the inner product
⊕

σ hσ on φ(E ⊗Z R) (so
our choices of Haar measure on E ⊗Z R are compatible for the following claim). Then
by Definition 1.21 and (2.2) we have

χ̂(E, ‖·‖sup) = log

(
vol(B(E))

vol(E ⊗Z R/E)

)
= log(V (r)r1(2rV (2r))r2) + χAr(E, h).

By Riemann-Roch (Theorem 2.6) and Example 2.5, χAr(R, h
can) = − log|DK |/2, we

conclude that

χ̂(E, ‖·‖sup) = d̂eg(E) + log

(
V (r)r1(2rV (2r))r2

|DK |r/2

)
.
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2. A standard corollary of Minkowski’s Theorem [Mor14, Corollary 2.2] says that for a
bounded symmetric set K and lattice Λ in a real n-dimensional vector space V , then
|K ∩Λ| ≥ 2−n exp(vol(K)/vol(V/Λ)), with strict inequality if K is furthermore closed.
Taking Λ as E, V as E⊗ZR (which has dimension rn), and K as {x ∈ V : ‖x‖sup ≤ 1},
we get

h0(E, ‖·‖sup) = log|K∩Λ| > −rn log 2+χ̂(E, ‖·‖sup) = d̂eg(E)+log

(
V (r)r1(2rV (2r))r2

2rn|DK |r/2

)

= d̂eg(E, h) + log

(
V (r)r1V (2r)r2

2r(r1+r2)|DK |r/2

)
since n = r1 + 2r2 and by part (1).

3. The same argument as part (2) works, except that we instead have K = {x ∈ V :
‖x‖sup < 1}, which has the same volume as {x ∈ V : ‖x‖sup ≤ 1}, and the strict
inequalities must be made non-strict.

We now want to give an analogous definition to Definition 1.10 in the language of arith-
metic divisors on R, keeping in mind the isomorphism of Proposition 1.17.

Definition 2.9. We call an arithmetic divisor (D, g) ∈ Ẑ1(R) conjugation invariant if
gσ = gσ for all σ ∈ K(C).

By Definition 1.4, d̂iv(a) for any a ∈ K∗ is conjugation invariant. Moreover, given a

conjugation invariant arithmetic divisor (D, g) and considering its class in ĈH
1
(R), the con-

struction in the proof of Proposition 1.17 and the previous sentence show that any Hermitian
line bundle associated to (D, g) under ĉ1 is of real type.

Corollary 2.10. Let (D, g) ∈ Ẑ1(R) be conjugation invariant. If d̂eg(D) ≥ log((2/π)r2
√
|DK |),

then there is x ∈ K∗ such that (D, g) + d̂iv(x) ≥ 0.

Proof. As in the proof of Proposition 1.17, construct a Hermitian line bundle of real type
(O(D), h) from (D, g), such that ĉ1(O(D), h) = (D, g). From part (2) of Theorem 2.8 we
see that as long as

d̂eg(D, g) = d̂eg(O(D), h) ≥ log

(
2r1+r2 |DK |1/2

V (1)r1V (2)r2

)
= log

(
2r2|DK |1/2

πr2

)
,

then there exists a nonzero small section x ∈ H0(O(D), h). Then by construction of O(D)
we have D + div(x) ≥ 0 in the finite part, and hσ(x ⊗ 1, x ⊗ 1) = |σ(x)|2 exp(−gσ) ≤ 1 for

all σ implies that −2 log|σ(x)|+ gσ ≥ 0 for all σ, so indeed (D, g) + d̂iv(x) ≥ 0.
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We may now prove the Minkowski theorem, and the finiteness of the class group using
our current framework.

Theorem 2.11 (Minkowski). If [K : Q] > 1, then |DK | > 1.

Proof. Pick a Hermitian line bundle over R with d̂eg(L) = log((2/π)r2
√
|DK |); this can be

done by picking an arithmetic divisor with specified coefficients at the archimedean places.
By Corollary 2.10, we have h0(E) > 0 and therefore d̂eg(L) ≥ 0 by Proposition 2.1. Hence

log|DK |/2− r2 log(π/2) ≥ 0.

Then |DK | ≥ (π/2)2r2 , so we are done except when K is totally real. In the case when K is

totally real (so r2 = 0), we want to produce a nontrivial Hermitian line bundle with d̂eg(L) =
log((2/π)r2

√
|DK |), so that log((2/π)r2

√
|DK |) = log(

√
|DK |) > 0 by the nontriviality

condition. Starting with any such Hermitian line bundle L, if it were isometric to the trivial
line bundle, then in terms of divisors in Ẑ1(R), L would correspond to a principal arithmetic
divisor. But by assumption r1 ≥ 2, so it is possible to re-choose the coefficients at the infinite
places while maintaining the same degree, and ensuring that the new arithmetic divisor is
not principal (because there are only countably many elements in K∗).

Corollary 2.12. The class group Cl(K) is finite.

Proof. We wish to prove that the quotient of Z1(R) =
⊕

p Z[p] with respect to {div(x) : x ∈
K∗} is finite. As in Definition 1.7, for D =

∑
p np[p] ∈ Z1(R) we define the degree to be∑

p np log|R/p|. Set CR = log((2/π)r2
√
|DK |), and

Θ = {E ∈ Z1(R) : E ≥ 0, deg(E) ≤ CR}.

For D ∈ Z1(R), if we set

D :=

(
D,
∑
σ

2(CR − deg(D))

[K : Q]
[σ]

)
,

then d̂eg(D) = CR, and by Corollary 2.10 there is x ∈ K∗ with D+ d̂iv(x) ≥ 0 as arithmetic
divisors. By the definition of D above and Definition 1.4, log|σ(a)| ≤ (CR−deg(D))/[K : Q]
for all σ. Then by the product formula in number fields

∏
p ordp(x)N(p) =

∏
σ|σ(x)|,

deg(D + div(x)) = deg(D) +
∑
σ

log|σ(x)| ≤ deg(D) +
∑
σ

CR − deg(D)

[K : Q]
= CR,

and so D + (x) ∈ Θ. But Θ is clearly a finite set and has full image under the projection
Z1(R)→ Cl(K).
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It is possible to prove the Dirichlet unit theorem via similar techniques, following the
notes by Chambert–Loir.

Corollary 2.13. The abelian group O∗K is finitely generated of rank r1 + r2 − 1. More
specifically, the image of O∗K under the logarithm map log : x 7→ (log|σ(x)|)σ is a lattice
inside the sum-0 hyperplane of (RK(C))conj.

Proof. Let A = (RK(C))conj (a real vector space of dimension r1 + r2), and let A0 ⊂ A

be the sum-0 hyperplane. Also let Ẑ1(R)0 be the subgroup of degree-0 arithmetic divi-

sors, and similarly for ĈH
1
(R)0. Give Ẑ1(R) the topology induced by the supremum norm

‖(D, g)‖ =
∥∥∥∑p npp,

∑
σ gσσ

∥∥∥ = max(maxp np,maxσ gσ), and give all its sub/quotient groups

the induced topologies.
Consider the injections A → Ẑ1(R) and A0 → Ẑ1(R)0 given by g 7→ (0, g). Fixing

an element in A such that d̂eg(0, h) = 1, these maps have continuous left inverses given

by (D, g) 7→ g and (D, g) 7→ g + d̂eg(D, 0) · h. Therefore these inclusions identify A and

A0 with open (and closed) subgroups of Ẑ1(R) and Ẑ1(R)0, respectively. Now note that

d̂iv(K∗) ∩ A0 = log(O∗K), since the left-hand side is the subset of norm-1 elements of OK ,

i.e. exactly the units. But d̂iv(K∗) is a discrete subgroup of Ẑ1(R),3 so log(O∗K) is a discrete
subgroup of A0.

Now choose a compact subset Ω of Ẑ1(R)0 that has full image under the projection to

ĈH
1
(R)0. This can be done by noting that the set Σ of effective arithmetic divisors of

degree CR = log((2/π)r2
√
|DK |) is compact, because such an arithmetic divisor must have

0 ≤ np ≤ CR/ logN(p) for all the nonarchimedean coefficients (in particular np must be
0 for all but finitely many p of small norm), and 0 ≤ gσ ≤ 2CR for all the finitely many
archimedean coefficients. The proof of Corollary 2.12 then shows that for any arithmetic

divisor D ∈ Ẑ1(R)0 of degree 0, after translating it into Σ by adding E :=
(

0,
∑

σ
2CR

[K:Q]
[σ]
)

,

we see that D is equivalent (modulo a principal arithmetic divisor) to an element of Ω :=

Σ − E ⊆ Ẑ1(R)0. Of course, this principal arithmetic divisor need not come from a unit,
and the next paragraph will rectify this when D comes from an element of A0.

The image Θ′ of Ω in Z1(R) (by forgetting the archimedean components of arithmetic
divisors) is contained in Θ (defined in the proof of Corollary 2.12), so finite. For each p ∈ Θ′

that is a principal divisor, pick ap ∈ K∗ such that div(ap) = p, and let Ω′ be the union of

the finitely many Ω + d̂iv(ap). Because Ω is compact, Ω′ is a compact subset of Ẑ1(R)0.

Now for g ∈ A0, we may choose a ∈ K∗ such that (0, g) − d̂iv(a) ∈ Ω. The projection

of this element in Z1(R) is principal −div(a) =: p, so (0, g) − d̂iv(a) + d̂iv(ap) ∈ Ω′. On
the nonarchimedean parts, we have div(a) = div(ap), and hence u := a/ap is a unit in O∗K .

3Because if 0 < t < 1 and d̂iv(x) is in {x : ‖x‖ ≤ t}, then we must have div(x) = 0 and |σ(x)| < t for all
σ ∈ K(C), so that x ∈ OK and has monic minimal polynomial with bounded Z-coefficients.
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So d̂iv(u) = (0, log(u)) has no nonzero coefficients in the nonarchimedean part, and has
log(u) ∈ A0. Hence g− log(u) lies in the compact subset Ω′ ∩A0 of A0, so that A0/ log(O∗K)
is compact as the image of Ω′ ∩ A0 in this quotient is full.

Hence log(O∗K) is discrete and cocompact, so a lattice in A0 with rank r1 + r2 − 1. The
kernel of log is the roots of unity in O∗K by the standard argument.

2.1 Ampleness in the 1-dimensional case

We want to conclude with some remarks on what ampleness should mean in the arithmetic
case. First, we want to determine how degree behaves under tensor product. For notation,
suppose L = (L, h), E = (E, k) are Hermitian R-modules of real type. Assume moreover
that (L, h) is a Hermitian line bundle, and the rank of E is r.

Lemma 2.14. Let (L, h)⊗ (E, k) be (L⊗R E, h⊗ k). Then

ĉ1((L, h)⊗ (E, k)) = rĉ1(L, h) + ĉ1(E, k).

In particular (Proposition 1.15)

d̂eg((L, h)⊗ (E, k)) = rd̂eg(L, h) + d̂eg(E, k).

Proof. By the recipe of Proposition 1.15, choose s ∈ L and s1, . . . , sr ∈ E such that L/Rs and
E/(Rs1 + . . .+Rsr) are torsion Z-modules. Then the s⊗si form a basis of (L⊗RE)⊗RK '
(L⊗RK)⊗K (E⊗RK), so (L⊗RE)/(R(s⊗ s1) + . . .+R(s⊗ sr)) is torsion as an R-module,
hence torsion as a Z-module. We claim that

[(L⊗R E)/(R(s⊗ s1) + . . .+R(s⊗ sr))] = r[L/Rs] + [E/(Rs1 + . . .+Rsr)]. (2.3)

Indeed let ω be a local basis of Lp over Rp for any prime p of R, and set s = aω. Since
Rs1 + . . .+Rsr is a free R-module, we have

lengthRp

(
(Lp ⊗Rp Ep)/(Rp(s⊗ s1) + . . .+Rp(s⊗ sr))

)
= lengthRp

(
(Rpω ⊗Rp Ep)/(Rp(aω ⊗ s1) + . . .+Rp(aω ⊗ sr))

)
= lengthRp

((Ep)/a(Rps1 + . . .+Rpsr))

= lengthRp
((Ep)/(Rps1 + . . .+Rpsr)) + lengthRp

((Rps1 + . . .+Rpsr)/a(Rps1 + . . .+Rpsr)) .

Since Rps1 + . . .+Rpsr is free (of rank r) over Rp with the same basis, the last term is equal
to rlengthRp

(Rp/aRp) = rlengthRp
(Lp/sRp). Therefore we obtain (2.3). For the archimedean

part, we have

log det((h⊗k)σ(s⊗si, s⊗sj)) = log det(hσ(s, s)kσ(si, sj)) = r log hσ(s, s)+log det(kσ(si, sj)),

and so the construction of ĉ1 gives ĉ1((L, h)⊗ (E, k)) = rĉ1(L, h) + ĉ1(E, k).
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From this we can obtain

Proposition 2.15. In the above notation, and furthermore assuming that E is projective
over R (of rank r), and L and E are of real type:

1. χ̂(L⊗n ⊗R E, ‖·‖sup) = nrd̂eg(L) +O(1).

2. h0
<1(L⊗n ⊗R E, ‖·‖sup) ≥ nrd̂eg(L) +O(1).

3. If d̂eg(L) > 0, then for sufficiently large n, L⊗n ⊗R E is generated by elements of
{s ∈ L⊗n ⊗ E : ‖s‖sup < 1}.

Remark 2.16. This is a very simple case of the general arithmetic Hilbert-Samuel formula.

Proof. Since the rank of L⊗n⊗E is r regardless of n, parts (1) and (2) follow from Theorem
2.8 (which requires the real type hypothesis) and Proposition 2.14. For part (3) we refer
to [Mor14, Proposition 3.22] as well as [Zha92, Lemma 1.6, 1.7] which develop the required
concepts in the geometry of numbers for the proof.

As in the classical case, we make the following definition:

Definition 2.17. Let L = (L, h) be a Hermitian line bundle of real type. We call L ample

if for large enough n, L⊗n is generated as an R-module by elements with ‖s‖L
⊗n

sup < 1 for

sufficiently large n.4

Corollary 2.18. The following are equivalent:

1. d̂eg(L) > 0.

2. Let (E, k) be a Hermitian vector bundle of real type. Then for sufficiently large n,
L⊗n ⊗ E is generated by elements s with ‖s‖sup < 1.

3. L is ample.

4. For sufficiently large n, L⊗n has a nonzero section s with ‖s‖sup < 1.

Proof. (1) implies (2) by part (3) of Proposition 2.15. (2) implies (3) by taking (E, k) to
be the trivial Hermitian line bundle. (3) implies (4) is trivial. (4) implies (1) because ĉ1

is a group homomorphism (as described in Proposition 1.17), so the degree of a Hermitian
line bundle is compatible with tensor product. Then by Proposition 2.1, we see that either
d̂eg(L) > 0 or L is the trivial line bundle, but Example 1.23 shows that this has no nontrivial
sections s with ‖s‖sup < 1.

4It is not clear to me why Moriwaki requires this inequality to be strict.
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Example 2.19. Letm ∈ Z be a squarefree integer, K = Q(
√
m). Set L = (R, {exp(−λi)|σi(·)|})

for {σ1 = id, σ2} = Gal(K/Q), where λ1, λ2 are real constants. We have

d̂eg(L) = 0−
2∑
i=1

log(exp(−λi)|σi(1)|2) = λ1 + λ2. (2.4)

Also, L
⊗n

= (R, {exp(−nλi)|σi(·)|}). For Proposition 2.15 to be true, the condition that
L is of real type is necessary.5 For instance, suppose m = −1, λ1 < 0, λ1 + λ2 > 0, so L

definitely cannot be of real type. For s = x+ iy ∈ R where x, y ∈ Z, ‖s‖L
⊗n

sup ≤ 1 if and only

if x2 + y2 ≤ exp(2nλ1), since λ1 < 0 < λ2. Hence if n ≥ 1, then s must be 0. Therefore

d̂eg(L) = λ1 + λ2 > 0 but L cannot be ample.

Example 2.20. Take the same setup as in the previous example, but now with m > 0 (take
m ≡ 2, 3 mod 4 for simplicity, although if we allow orders in OK as Moriwaki does, we can
treat m ≡ 1 mod 4 as well). In this case, all embeddings K ↪→ C are real, so L is always of

real type. Let λ, ε > 0, set λ1 = λ + ε, λ2 = −λ, so as in (2.4), d̂eg(L) = ε > 0. Then by
part (3) in Proposition 2.15, for large enough n (depending on λ and ε of course) there is

nonzero s = x + y
√
m ∈ R with ‖s‖L

⊗n

sup ≤ 1. In particular, |x + y
√
m| ≤ exp(n(λ + ε)) and

|x− y
√
m| ≤ exp(−nλ). Hence∣∣∣∣xy −√m

∣∣∣∣ ≤ 1

|y| exp(nλ)
, |y| ≤ exp(n(λ+ ε))√

m
.

The second inequality is true as otherwise (assuming by symmetry that x < 0, y > 0)
|x − y

√
m| ≤ exp(−nλ) is violated. By making ε tend to 0, we get infinitely many x, y

satisfying this Dirichlet-type approximation, albeit slightly weaker: in the standard Dirichlet
theorem we should have |x/y −

√
m| ≤ 1/y2, but here we instead have |x/y −

√
m| ≤

exp(nε)/(y2
√
m), which might be greater than 1/y2 depending on how large n is with respect

to λ and ε.

5So perhaps I should have required this condition in the Definition 1.13 for Hermitian line/vector bundles,
but honestly I am not sure of the correct convention.
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